Carnegie Mellon University

Laboratory Methods for Automated Biology I

Course Number: 02-761

This is a graduate level laboratory-based course designed to teach technical and biological laboratory skills used to design and execute automated biological experiments. Students will learn the principles, experimental paradigms, and techniques for automating biological experimentation with the goal of enabling complete automation of biological experimentation. Students will learn the biological principles underlying various automatable experimental methods, the design concepts for automated experiments, engineering elements enabling hardware for preparing samples and doing automated data collection, and software for controlling that hardware. These topics will be taught in lectures as well as through laboratory experience using multi-purpose laboratory robotics. Instruments used will include liquid handling robots, plate readers, and automated microscopes. Grading will be based mainly on satisfactory completion of assignments.

This course is intended for first-year MS in Automated Science students.

Semester(s): Fall
Units: 12

Learning Objectives

In order to rapidly generate reproducible experimental data, many modern biology labs leverage some form of laboratory automation to execute experiments. In the not so distant future, the use of laboratory automation will continue to increase in the biological lab to the point where many labs will be fully automated. Therefore, it is critical for automation scientists to be familiar with the principles, experimental paradigms, and techniques for automating biological experimentation with an eye toward the fully automated laboratory.

Assessment Structure: 

During weekly laboratory time, students will complete and integrate parts of two larger projects. The first project will be focused on liquid handling, plate control, plate reading, and remote control of the automated system based on experimental data. The second project will be focused on the design, implementation, and analysis of a high content screening campaign using fluorescence microscopy,  image analysis, and tissue culture methods.

Grading will be based on lab and project completion and quality.