Carnegie Mellon University

Dannie Durand

Associate Professor, Biological Sciences

5000 Forbes Avenue
Pittsburgh, PA 15213


Computational analysis of molecular sequence data is a key component in solving three critical biological problems of the 21st century: how genes interact to produce living cells, how gene malfunction causes disease and how complex, multicellular organisms evolved from simple, unicellular organisms. In my research, I use computational approaches to studying the role of gene duplication in the acquisition of new gene function and the evolution of vertebrate genomes. New genes arise through gene duplications, errors during cell division that result in extra copies of genes. These extra copies subsequently mutate to take on new functional roles in the cell. The duplication of large regions, ranging from chromosomal segments to the entire genome, is believed to have played a crucial role in early vertebrate evolution. According to the hypothesis, the new genes that resulted from these massive duplications are responsible for the evolution of innovations, such as skeletal structure, limbs, and a complex central nervous system, that distinguish vertebrates from other life forms. If we can understand how these genes acquired new function following duplication, we will have a better understanding of how we evolved and the role those genes play in vertebrates living today.